Краткая информация о проекте

Наименование	AP14869180 «Разработка эффективных технологии
	совместной гидрогенизационной переработки углей и
	горючих сланцев РК для получения компонентов моторных
	топлив и химических веществ» (0122PK00963)
Актуальность	В современных условиях и в перспективе, в связи с
	ограниченными запасами нефти (не более 90 млрд т) и
	многократно более значительными запасами углей и сланцев
	в мире, в том числе в Казахстане, Эстонии и России, вопросы
	их химической переработки снова становятся актуальными.
	Гидрогенизация твердых топлив – универсальный метод
	получения жидких продуктов, который применительно к
	органической массе сланцев (ОМС) и углей (ОМУ) может
	быть осуществлен под невысоким давлением водорода.
	Органическую массу горючих сланцев можно применять в
	виде добавок (10-20 %) при гидрогенизации угля для
	инициирования его деструкции вследствие более высокой
	реакционной способности ОМС. Это направление в
	последнее время привлекает внимание исследователей
	Германии, России, США, Японии и других стран. Кроме того,
	ОМС содержит значительное количество водорода – свыше 9
	%, что предопределяет при гидрогенизации низкий расход
	его извне по сравнению с гидрированием угля (содержание
	водорода 5-6 %) и более благоприятные экономические
	показатели переработки.
Цель	Цель проекта – разработать эффективную технологию
,	и научно-технические решения совместной
	гидрогенизационной переработки Талдыкольского угля и
	Киинского сланца в присутствии наногетерогенных
	никельсульфидных катализаторов и получаемых
	углесланцевых дистиллятов для получения компонентов
	моторных топлив и химических веществ.
Задачи	1. Определить характеристики угля месторождения
	Талдыколь, сланца месторождения Киин и нефтяного
	пастообразователя. Исследовать химический состав и
	свойства, влияние технологических параметров при
	постоянном количестве пастообразователя на выход светлых
	фракций при гидрогенизации угля месторождения
	Талдыколь. Исследовать процесс предварительного
	озонолиза и влияния ү-облучения на процесс гидрогенизации
	Талдыкольского угля. Изучение формальной кинетики и
	термодинамики процессов гидрогенизационной переработки
	Талдыкольского угля.
	2. Определить эффективное количество добавок
	сланца месторождения Киин к углю месторождения
	Талдыколь для совместной гидрогенизации в оптимальных
	технологических параметрах ведения процесса (температура,
	давление, количество химический механизм действия
	наногетерогенного никельсульфидного катализатора,
	синтезированного <i>in situ</i> из водных растворов прекурсора).
	при гидрогенизации смеси уголь +сланец с добавками

сульфидирующего агента – элементной серы.

- 3. Определить групповой углеводородный и химический состав, содержание серы полученных дистиллятных углесланцевых фракций с т. кип. до 180°С и 180-360 °С. Физико-химичес-кими методами исследовать химический состав исходных и обесфеноленных светлых дистиллятов.
- 4. Исследовать влияние технологических параметров гидроочистки углесланцевых бензиновых и дизельных фракций на глубину удаления гетероатомных и непредельных соединений, ароматических углеводородов в присутствии промышленных катализаторов.
- 5. Разработать принципиальную технологическую схему получения компонентов моторных топлив совместной гидрогенизацией Талдыкольского угля сланца месторождения Киин. Определить основные физикохимические и эксплуатационные свойства в соответствии с действующих требованиями стандартов полученных компонентов моторных топлив.

Ожидаемые и достигнутые результаты

Определены эффективные количества добавок сланца месторождения Киин к углю месторождения Талдыколь для совместной гидрогенизации в оптимальных технологических параметрах ведения процесса (температура, давление, количество химический механизм действия никельсульфидного наногетерогенного катализатора, синтезированного in situ из водных растворов прекурсора) при гидрогенизации смеси уголь +сланец с добавками сульфидирующего агента – элементной серы. На основании полученных результатов сделан вывод о достаточно высокой активности никель сульфидных катализаторов в процессе гидрогенизации угля Талдыкольского месторождения. Модифицирование катализаторов добавками элементарной серой (0,75-1,25 %) позволяет увеличить выход жидких продуктов до 79-88,6 % по сравнению с осуществлением немодифицированных процесса присутствии В катализаторов.

Определены групповой углеводородный и химический состав, содержание серы полученных дистиллятных углесланцевых фракций с т. кип. до 180 °C и 180–360 °C. Физико-химическими методами исследован химический состав исходных и обесфеноленных светлых дистиллятов. Как показали результаты исследований, каталитические свойства горючих сланцев позволяют осуществить в оптимальных условиях процесс гидрогенолиза органической массы угля с высокой степенью превращения в жидкие дистиллятные продукты без коксообразования. Степень превращения смеси органической массы сланца и угля и сланца гораздо выше, чем угля.

Будут исследованы влияния технологических параметров гидроочистки углесланцевых бензиновых и дизельных фракций на глубину удаления гетероатомных и непредельных соединений, ароматических углеводородов в

присутствии. Будет разработана принципиальная технологическая схема получения компонентов моторных топлив совместной гидрогенизацией Талдыкольского угля и сланца месторождения Киин.

Будут определены основные физико-химические и полученных эксплуатационные свойства компонентов бензина низкосернистого дизельного И топлива соответствии с требованиями ГОСТ и получены исходные данные для разработки ТЭО демонстрационной установки по получению компонентов моторных топлив из углесланцевых дистиллятов, полученных применением гидрогенизационных процессов.

Имена и фамилии членов исследовательской группы с их идентификаторами (Scopus Author ID, Researcher ID, ORCID, при наличии) и ссылками на соответствующие профили

- 1. Каирбеков Ж., доктор химических наук, профессор. Scopus Author ID 55910705200. Researcher ID Web of Science: A-5389-2015. ORCID: 0000-0002-0255-2330.
- 2. Сармурзина Раушан Гайсиевна, доктор химических наук, профессор, академик КазНАЕН, почетный академик НАН РК. Scopus author ID: 6603381995. ORCID 0000-0002-9572-9712
- 3. Есеналиева Маншук Зинуллаевна, кандидат химических наук, доцент. Scopus author ID: 6507284187. ORCID: 0000-0002-0817-2048
- 4. Джелдыбаева Индира Мухаметкеримовна, PhD-доктор. Scopus Author ID: 56600659100. Researcher ID Web of Science: CPH-4244-2022. ORCID: 0000-0002-1524-4046.
- 5. Суймбаева Салтанат Маликовна, PhD-доктор. Scopus author ID: 57201691853. Researcher ID Web of Science: EBK-0532-2022. ORCID ID: 0000-0003-3990-4974.
- 6. Абильмажинова Дидар Заманбековна PhD-докторант. Scopus author ID: 58021595400. ORCID: 0000-0001-7362-4963
- 7. Кази Марлен Рустембекович, бакалавр. ORCID: 0009-0006-8523-6101

Список публикаций со ссылками на них

- 1. Каирбеков Ж.К., Джелдыбаева И.М., Каирбеков А.Ж., Суймбаева С.М., Молдабаев А. Применение предварительного озонолиза и у-радиации для повышения реакционной способности угля месторождения Талдыколь при гидрогенизации // Материалы VIII международной Российско-Казахстанской научно-практической конференции «Химические технологии функциональных материалов», Алматы, 2022. С. 211-213.
- 2. Каирбеков Ж., Суймбаева С.М, Ермолдина Э.Т., Джелдыбаева И.М. Влияние озонолиза на глубину каталитической гидрогезации угля месторождения Талдыколь // Межд. Российско- Казахстанский Симпозиум «Углехимия и экология Кузбасса» 2022 г., Кемерово, Россия. С.20.
- 3. Ж. Каирбеков, И.М. Джелдыбаева, С.М. Суймбаева, А.Ж. Каирбеков. Влияние предварительного озонирования и уградиации на глубину гидрогенизаций угля месторождения Талдыколь // Материалы Международной научной конференции «Перспективные направления развития

	химической науки, технологии и экологии», посвященной
	75-летию Института химических наук им. А.Б. Бектурова и
	120-летию академика АН КазССР А.Б. Бектурова Алматы,
	2022 C.94-96.
	4. Каирбеков Ж.К., Есеналиева М.З., Суймбаева С.М.,
	Джелдыбаева И.М., Каирбеков А.Ж. Совместная
	гидрогенизация Талдыкольского угля и Киинского сланца //
	Материалы IX Международной Российско-Казахстанской
	научно-практической конференции г. Новосибирск, 25-27
	мая 2023 гС.53-55.
	5. Kairbekov Zh., Sarmurzina R.G., Esenalieva M.Z.,
	Kairbekov A.Zh., Suimbaeva S.M., Dzheldybaeva I.M. Obtaining
	fuel products by combined hydrogenation of coal and shale. //
	Kazakhstan journal for oil & gas industry 2023. – No5. – P.83-
	91. DOI: https://doi.org/10.54859/kjogi108656
Информация о патентах	-